

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # BeanShell changelog

2.1.1

Fix src/bsh/util/AWTConsole.java breakage with newer Java versions

2.1.0

This release formalizes the merge of 2.0b6 with suitable backports from
the development (HEAD) version of BeanShell (3). Also included are
are some ALv2 contributions to the BeanShell2 fork that had not been
folded into BeanShell but are still applicable to this version. For
backwards compatibility purposes, the 2.x branch of BeanShell still
supports a minimum Java version of 1.6.

2.0 beta 6

Security fix

This release fixes a remote code execution vulnerability that was identified in BeanShell by [Alvaro Muñoz](https://twitter.com/pwntester) and [Christian Schneider](https://twitter.com/cschneider4711). The BeanShell team would like to thank them for their help and contributions to this fix!

An application that includes BeanShell on the classpath may be vulnerable if another part of the application uses [Java serialization](https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html) or [XStream](http://x-stream.github.io/) to deserialize data from an untrusted source.

A vulnerable application could be exploited for remote code execution, including executing arbitrary shell commands.

This update fixes the vulnerability in BeanShell, but it is worth noting that applications doing such deserialization might still be insecure through other libraries. It is recommended that application developers take further measures such as using a restricted class loader when deserializing. See notes on [Java serialization security](http://www.oracle.com/technetwork/java/seccodeguide-139067.html#8), [XStream security](http://x-stream.github.io/security.html) and [How to secure deserialization from untrusted input without using encryption or sealing](http://www.ibm.com/developerworks/library/se-lookahead/).

A [CVE number](http://cve.mitre.org/cve/) will be requested.

2.0 beta 5

Persistent Scriptable Classes! (Experimental Feature)

Using the system property -DsaveClasses=<savedir> you can instruct
BeanShell to write out persistent class files for class definitions found
in the script. In this mode BeanShell will not execute code, but will
generate and store a class files for each class definition it finds.
These classes are the same as the ordinary runtime generated delegate
classes used internally by BeanShell but additionally have static
initializer code that allows them to bootstrap an instance of the BeanShell
interpreter to execute their scripted body if the class is used from
an external application.

Currently we are using a simple convention whereby a class Foo.class
expects to find its associated scripted class definition in a file
Foo.bsh in the same location as the class file. Each stored class
must have a corresponding script definition. The scripts itself may
contain any amount of BeanShell code beyond the class definition
and may refer to other scripted classes or saved classes. However each
saved class will currently initialize its own interpreter instance.

So, for example, to create a class for the following scripted class
definition:


	```java
	
	class Foo {
	Foo() { print(“I’m being constructed!”); }





}





```

you could place the script into a file Foo.bsh in the current directory
and execute:


	```sh
	java -DsaveClasses=. bsh.Interpreter Foo.bsh





```

This will create the class Foo.class. The Foo class may be used like any
ordinary Java class and invoked from ordinary Java code. Upon being
loaded it will automatically create a BeanShell interpreter instance
to load and execute its corresponding Foo.bsh script file. The script
is expected to correspond to the structure of the class: to initialize
static instance members and implement all static and instance methods
required by the class. Beyond that, the script is free to change and
include additional script body outside the scripted class definition.

For example, we might later change the Foo.bsh script to the following:


	```java
	welcomeMessage = “Hello World!”;


	class Foo {
	Foo() { print( “I’m being constructed: “+ welcomeMessage ); }





}





```

Here’s another example showing loose code in the script:


	```java
	//  Begin script Foo.bsh


	class Foo {
	public static void main( String [] args ) { }





}

message = “Hey”;
message += ” you!”;
num = 2 * 2;
message += ” The answer is: “+num;

// end script Foo.bsh





```

now we have a script that can be launched like any other Java class
via java Foo. The loose script body is run upon class initialization.
Moving that text into the class body would cause it to be run on class
construction (instance creation… along with any constructor).

Added JSR223 javax.script adapter engine implementation in a new bsh.engine package

This implementation of the spec supports pluggable ScriptContext. Please
see the [TestBshScriptEngine.java](src/test/java/bsh/TestBshScriptEngine.java) file (and the spec) for a starting point
on how to use this.

BeanShell maintains all of its info on variables (type, modifiers,
etc.) and all of its internal state for a given ScriptContext via a
BeanShell NameSpace embedded in the context. This allows us to be
completely pluggable with respect to the spec, but still keep the full
interpreter state between evaluations.

Added a new class, ExternalNameSpace to the distribution

This is a BeanShell namespace that knows how to externalize its variables
to a standard Map. This class is, of necessity, dependent on JDK1.2+,
however there is no dependency in the core on this class, so you can
exclude it in the usual way.

	
	Fixed static import syntax. It’s now the same as Java 5:
	`java
import static Foo.*;
`
(previously was static import …)

Static blocks in scripted classes are now working.

Added test case.

2.0 beta 4

	Source compiles under JDK 1.5

	
	Better defined classloading precedence:
	
	in-script evaluated class (scripted class)

	in-script added / modified classpath

	optionally, external classloader

	optionally, thread context classloader

	plain Class.forName()

	source class (.java file in classpath)

	Method selection code has been rewritten to move towards Java 5 rules.

This should correct a number of problems where inaccessible methods are
selected and also correct security problems in applets and other secure
environments. Method selection should no longer call getDeclaredMethods()
unless accessibility is explicitly activated. The same is true for
constructors and fields.

	Updated applet demos (http://beanshell.org/demo). JConsole and desktop

now run in untrusted environment, with limitations. Applets cannot
create classloaders, so BeanShell cannot script classes in the unsigned
environment. These demos are very rough and need some work.

	The show() command now works in both interactive and non-interactive

	modes. This means that for experimentation, instead of doing things like:
	`java
print(myObject instanceof Blah);
print(myObject.getFoo());
print(myObject.somethingElse());
`
.. now you can simply do:
`java
show();
myObject instanceof Blah;
myObject.getFoo();
myObject.somethingElse();
`
This can be combined with the trace property -Dtrace=true (currently a
static, interpreter wide flag) to display line by line execution and
results.

	The bsh.show variable is gone and has been replaced with a property

on the interpreter.

	Fixed bug in super.method() resolution inside nested blocks.

	
	Added workaround for load() command to use the BshClassManager for
	deserializing classes.

	Fixed some cases where SecurityException could not be caught by scripts
and handled.

Changes in 2.0 beta 3

	String literals are now interned, as per JSL ch3 10.5.

Changes in 2.0 beta 2

Added code to address the class redefinition problem. BeanShell will now
use the bsh classloader to allow the classes to be reloaded as necessary.

Note: this only affects users who are utilizing the new BeanShell 2.0+
features to script classes and interfaces using the standard Java
class/interface syntax. There is no problem with scripting interfaces
using bsh objects or the anonymous inner class style syntax that has always
been supported.

Changes in 2.0 beta 1

With release 2.0 BeanShell supports the full Java syntax.
You can now script Java classes that serve as real Java types.
Scripted classes may extend ordinary Java classes, abstract classes, and
implement interfaces as usual. Constructors and methods invoked on the
scripted classes are delegated to the BeanShell interpreter. This
means that within scripted classes you may use the full power of
BeanShell scripting including commands, loose types, and other BeanShell
Java extensions such as method closures if you wish.

BeanShell will now attempt to load classes from “.java” source files in
the classpath if the compiled class is not found.

Current Limitations:

	In order to run a class file’s main method with arguments from the
command line the class containing your main method must be the last
item in the file. e.g. a .java file with the public class appearing
last.

	Static final fields (constants) in interfaces are currently broken.

	Non-static inner classes are currently implemented in a non-standard
way (using mix-ins) so mixing interpreted classes with their
pre-compiled inner classes will not work properly in all cases.

	Inner classes are not properly “imported” in some cases. e.g. Class A
contains one or more inner classes. Class B extends class A and
attempt to refer to those inner classes by their unqualified names.

	Static blocks in the class body are not yet implemented.

	If you have a source class at the wrong place in the classpath you
may get a non-fatal error when bsh attempts to load the class again.

	JDK 1.5 style static class imports.

You can import the static methods and fields of a java Class into a
BeanShell namespace. e.g.

`java
static import java.lang.Math.*;
sqrt(4.0);
`

	Instance object imports (mix-ins) with the importObject() command.

You can import the methods and fields of a Java object instance into
a BeanShell namespace. e.g.

`java
Map map = new HashMap();
importObject(map);
put("foo", "bar");
print(get("foo")); // "bar"
`

Changes in 1.3 beta 2

	Added reserved Java keywords. Added: strictfp, implements,
extends, package, and the new Java 1.5 keyword enum. strictfp
is now accepted as a modifier and ignored. The rest are not supported
(yet).

	Properties style auto-allocation of variables.
`java
// foo is initially undefined
foo.bar.gee = 42;
print(foo.bar.gee); // 42
print(foo.bar); //'this' reference (XThis) to Bsh object: auto: bar
print(foo); //'this' reference (XThis) to Bsh object: auto: foo
`

When assigning to a compound name, undefined components being resolved
relative to a scripted object (bsh this type reference) will be
auto-allocated as scripted objects.

This means that you can use BeanShell scripts just like properties
files for initialization parameters.

	BeanShell this type references can now implement more than one
interface. Use getInterface(Class[]).

	BshMethod getReturnType() now returns Void.TYPE for voids, rather than
the (incorrect) wrapper value Primitive.VOID.

Changes in 1.3 beta 1

	
	Class management Changes - class management is now on a per-Interpreter
	(per-global namespace) basis. Multiple interpreter instances do not
any longer by default share classpath or cached class information.
(This will help in application server deployments).
Added the method: Interpreter getClassManager()
%% some minor incompatible changes in [NameSpace.java](src/main/java/bsh/NameSpace.java) api.
The NameSpace constructor now requires a BshClassManager instance.

	
	Fixed bug where using reloadClasses() with no arguments (to reload
	the entire classpath) did not work properly when user classpath
included components with relative paths.

	
	Scripts executed with the run() command (as opposed to eval() or
	source()) now have their own class manager and therefore classpath.
Any namespace the is disconnected from its parent (pruned()) now
creates a new class manager. In the case of the run() command we
inherit the old classpath explicitly. This behavior may evolve
to cover all cases of a namespace with no class manager or parent.
Note: the test suite runs a bit slower now because each test is
run() and starts with a clean class cache. Note that creating
variants on the run() behavior (e.g. the old behavior) is trivial…
See run.bsh.

	
	The bsh.system object which is shared across Interpreter instances
	has been renamed bsh.shared. For backwards compatibility it is
still referenced as bsh.system as well.

	
	Implemented some experimental caching of class method resolution for
	performance. When a method (overloaded or single) is resolved
for a set of arguments, that method is cached based on the class,
argument types, and method name. In the test case of a loop simply
calling a Java method on an object or class this results in about a
40% speedup.

	Consolidated bsh scripted method dispatching code into [This.java](src/main/java/bsh/This.java).

	
	All scripted objects now implement the standard object protocol of
	toString(), hashcode() and equals(). Scripted object behavior is now
more consistent.
%% One minor incompatible change: the invoke() meta-method no longer
intercepts toString(), hashcode() or equals(). If you wish to
override these you must script them directly in the object.

	
	All normal error messages should now include line numbers and invocation
	text. Removed the no context constructors for EvalError and
TargetError. Added checked parallel exceptions UtilEvalError and
UtilTargetError for use in other areas. Use UtilEvalError
toEvalError(node, callstack) to rethrow these as necessary.

	
	Added script stack trace to error messages (e.g. method a() called
	method b(), etc.). EvalError and TargeError now require callstack.
Added getScriptStackTrace() method to EvalError API. toString()
prints the script stack trace by default.

	
	Errors indicating bad return control or return type from method now
	point to the exactly location of the return.

	
	Removed deprecated get/setVariable methods… optimized for common case
	in 1.2 branch so there should be no performance penalty for using
set over setVariable.

	Remote client can now utilize bsh:// URLs to talk to embedded bsh server.

	
	Added “bsh” target to build.xml for running a script from the current
	build. e.g. ant -Dfile=foo.bsh bsh

	Stopped squelching NoClassDefFound errors… This was the source of

much frustration where BeanShell would indicate that a class was not found
when it was really a dependent class that was missing. We now catch
NoClassDefFoundError and add a message specifying which class was being
loaded when the missing class was encountered.

	
	Added catch block in bshdoc.bsh script to report the file it was
	processing when an error occurs.

	Fixed bug allowing try { } without catch or finally.

	
	Enhanced bsh shell script launcher to add a default bsh JAR if none
	is in the classpath (as determined by a simplistic name test). Works
on Cygwin and Unix.

	added sourceRelative() command, which sources the file relative to the
caller’s directory, not the working directory. (See the bshdoc for
more explanation).

	Upgraded to JavaCC 3.0 available from:
http://www.experimentalstuff.com/Technologies/JavaCC/index.html
(Let’s see, how many places have owned JavaCC now? Sun Test, then
Metamata, then WebGain, then Sun “experimental stuff”? Sun has
promised to open source this… I hope they follow through).
Modified build.xml to use the new package name (no package) and to assume
that the jar is in the classpath for now.

	Refactored and removed the ugly “LHS” part of the grammar. This removed
two ASTs which essentially duplicated the “straight” part of the grammar.
There is still a bsh.LHS class (used as a wrapper for the target of an
assignment expression) but it is now created based on context rather than
via a special part of the grammar. Perhaps no one but the author will
care about this but this always bugged me. This also fixes some corner
cases in assignments that were broken (tests fields1.bsh fields2.bsh).

	Switched to BSF 2.3 package name by default. BSF was donated from
IBM to Jakarta and changed its package name with 2.3. If you want to use
an older release just grab the bsh-bsf-1.2x.jar and drop it in your
classpath ahead of your bsh 1.3 dist.

	Enhanced array creation to support undefined array dimensions as in Java.
e.g. int [][][] foo = new int [3][][];

	Enhanced array creation to support auto-casting in array initializers,
e.g. even though a primitive number is an int by default, the following
work (as in Java):
`java
long [] la = { 1, 2 }; float [] fa = { 1, 2 }; byte [] ba = { 1, 2 };
`

	Fixed import caching bugs.

	Fixed problems with the method resolution caching: added hashcode to
[Primitive.java](src/main/java/bsh/Primitive.java), fixed null argument issue, separated caches into object
and static, removed side-effect from resolveJavaMethod in Reflect. Did
some initial profiling. Overall I’m seeing about a 50% speedup in code
that does primarily method dispatching.

	Improved BshServlet - EvalErrors (and ParseExceptions) no longer spew the
whole script again in the error message. Inline evals now report the
“file” name as an abbreviated portion of the script. Errors in the
servlet results show the offending line highlighted (html) red with four
lines of context and line numbers. Tweaked the template html just a bit.

	Removed deprecated overloaded NameSpace.getImportedClasses()

	Moved Name.ClassIdentifier to bsh.ClassIdentifier top level class.
ClassIdentifier allows scripted methods to accept plain class names as
arguments. e.g. javap(java.lang.String);

	Enhanced error message for undefined argument to method - now prints the
argument text instead of the method parameter name and position.

	Clarified the scoping of closures and blocks and fixed related bugs.
This should now work as expected. A this reference always refers to
the nearest enclosing method or the root scope. This is true even when
the expression returning or assigning the this reference is inside one
or more nested Java blocks. e.g.


```java
myMethod() {


if ( true ) { /* inside block / } else { / / }
{ / gratuitous block */ }







Returning or assigning this from inside myMethod() or inside any of
the blocks all use the same this reference (myMethod).  You may
refer to local, typed variables declared in the block this.varname as
expected, but they are not visible outside of the block (as in Java).
See tests/this.bsh.

Methods defined inside a block are now set in the parent block, as
is consistent now with everything else blocks do.



	Enhanced error message on missing or incorrect constructor.


	Switch statements should now work with all types.  Previously numeric
switch statements only worked on the type int.  Now any numeric type or
wrapper will serve as the switch value and auto-boxing/unboxing occur as
elsewhere in BeanShell.  Switch statements also work with object types -
e.g. you can switch on Strings, Dates, or any objects that test properly
with equals().  The only comparison that is not allowed is primitive to
arbitrary (non wrapper) object type.  e.g. compare 2 to a “two”.  This
will cause a primitive / object mismatch error.


	Did some minor refactoring and cleanup in [Reflect.java](src/main/java/bsh/Reflect.java).


	Added enhanced for loop as per JDK 1.5.  (Belated thanks to Daniel Leuck
for submitting his “each” statement long, long ago.)
So you can now do things like:


```java
List foo = getSomeList();

	for (untypedElementfoo)
	print(untypedElement);

	for (Object typedElement: foo)
	print(typedElement);

int [] array = new int [] { 1, 2, 3 };

	for(iarray)
	print(i);

	for(char c“a string”)
	print(c);


```




Supported iterable types include all the obvious things.  See the new
BshIterator API addition below for specifics.



	Added BshIterator interface and bsh CollectionManager.  BeanShell now
supports a unified API for iteration over composite types including:


JDK 1.1+ (no collections): Enumeration, arrays, Vector, String,
StringBuffer
JDK 1.2+ (w/collections): Collections, Iterator




This was added to support the enhanced for loop above, but can also be
used in BeanShell commands that wish to loop over composite objects to
display them.  Usage e.g.:


```java
cm = CollectionManager.getCollectionManager();
if (cm.isBshIterable(myObject))
{

BshIterator iterator = cm.getBshIterator(myObject);
while (iterator.hasNext())

i = iterator.next();

If this proves to be useful we could add additional syntactic magic
later such as making all composite types implement the magic interface
BshIterable, etc.

	
	Maps can now be used with the hashtable style accessor syntax. e.g.
	`java
Map map = new HashMap();
map{"foo"} = "bar":
`

This is another feature of the new CollectionManager (1.1 compatibility
is preserved).

	Fixed void initializer bug whereby a void value in an initializer was
allowed.

	Refactored variable management a bit - all variables (both typed and
untyped) are now wrapped in the wrapper NameSpace.Variable. We could put
a listener API on there if we wanted to “watch” variables.

	Implemented BeanShell 1.3 scoping changes and preserved backwards
compatibility with the -Doldscoping=true switch.

	Variable assignments now search up the parent chain for the variable
definition rather than defaulting to local scope. Variable assignments
will therefore find the nearest enclosing variable definition - as one
would expect in Java. Prior to BeanShell 1.3 this was only true when
“strict Java” mode was enabled.

	So, for example, the following idiomatic things now work as expected:
	```java
incrementX() { x=x+1; }
x=1;
incrementX();
assert( x == 2 ); // true!

setFlag() { flag=true; }
setFlag();
assert( flag == true ); // true!
```


	A typed variable declaration will define the variable as usual in Java.

An untyped variable assignment - for which there is no definition in any
enclosing scope - will end up as a global variable assignment. e.g.


```java
int x = 1; // parent scope

foo()
{


// foo scope
x = 2; // x assigned in parent scope

int y = 1;
y = 2; // y assigned in foo scope

z = 99; // z has no enclosing scope, assigned global











	An untyped variable can be made local in scope by assigning it with





the qualifier this (as usual) or by using the new keyword var to
explicitly declare it as an untyped variable.


```java
foo()
{

// secret1 and secret2 are local to foo()
this.secret1 = 42;
var secret2 = 42;

	The qualifier super may be used, as in Java, to begin the search for a

	variable definition in the parent scope.
	```java
int y = 1; // parent scope
foo()
{


int y = 2;
super.y = 3; // y assigned in parent scope












	Object closures (scripted objects created by returning this from a
method) may be assigned variables as usual:


`java
foo() { return this; }
foo=foo();
foo.a=1;
print( foo.a ); // 1
print( a ); // ERROR 'a' undefined here
`






	The old scoping rules have been preserved and can be switched on by





setting the system property oldscoping to true.
See newscoping.bsh in the test suite for more examples.
Note: There is exactly one line of code in [NameSpace.java](src/main/java/bsh/NameSpace.java) that looks
at the Interpreter.LOCALSCOPING flag to determine what to do.
Everything else happens naturally.  So there should be no fear that we
are accumulating legacy baggage.  On the contrary, BeanShell refactoring
is making it more powerful and simpler.


	Fixed bug in evaluation of operator-assignments with postfix in the
RHS.  (Java behavior seems strange to me.) e.g.
`java
i=1; i+=i++; // should be 2 apparently
i=1; i+=i++ + i++; // should be 4 apparently
`


	BeanShell now supports modifiers (e.g. public, private, static, etc.)
on methods and typed variable declarations.  Basic sanity checks are
done at parse time (e.g. you can’t apply volatile to a method, mix
public/private, etc.)  “final” is implemented for typed variables but
other modifiers are currently ignored.


	The “synchronized” modifier is now implemented for methods and
synchronized blocks.  Synchronized blocks work as in Java.
Synchronized methods lock their parent namespace’s This reference, so
for purposes of serialization (executing exclusively one one at a time)
they work as in Java.
```java
// The following synchronize on the same lock
synchronized (this) { } // block
synchronized int foo () { } // method foo
synchronized int bar () { } // method bar
int gee() {

synchronized(super) { } // inside gee()

	The “throws” clause on methods is now supported. Throws clause names
are validated to insure that they are known class types, however they
are not enforced beyond that.

	Field style object property access now supports isFoo() style getters
for boolean properties. e.g.
`java
Float flot = new Float(0f);
print(flot.infinite); // float.isInifinite()
`

	Improved error message on attempting to access private/protected
members without setAccessibility(true). Error now shows non-public
method and suggests turning on accessibility.

	User defined command prompt in interactive mode. The user may set the
value for the prompt string using the variable bsh.prompt or by
defining the scripted method (or command) getBshPrompt().
If the command or method getBshPrompt() is defined it will be called to
get a string to display as the user prompt. For example, one could
define the following method to place the current working directory into
their command prompt:
`java
getBshPrompt() { return bsh.cwd + " % "; }
`

The default getBshPrompt() command returns the value of the variable
bsh.prompt if it is defined or the string “bsh % ” if not. If the
getBshPrompt() method does not exist, throws an exception, or does not
return a String, a default prompt of “bsh % ” will be used.

	Fixed JConsole backspace through prompt bug.

	User Command Path - You may now import BeanShell scripted or compiled
commands from any package path using the importCommands() method.
You may use either “/” path or “.” package notation. e.g.
`java
// equivalent
importCommands("/bsh/commands")
importCommands("bsh.commands")
importCommands("/mypackage/commands")
`

	When searching for a command each path will be checked for first, a file

named ‘command’.bsh and second a class file named ‘command’.class.

	You may add to the BeanShell classpath using the addClassPath() or

	setClassPath() commands and then import them as usual.
	`java
addClassPath("mycommands.jar");
importCommands("/mypackage/commands");
`

	If a relative path style specifier is used then it is made into an

absolute path by prepending “/”. Later imports take precedence over
earlier ones.

	Imported commands are scoped just like imported classes.

	See news about the invoke() meta-method for information about how you

could implement your own, arbitrary command loading.

	The getResource() command now utilizes the BeanShell classpath. i.e.
you can get resources from paths added with addClassPath(), etc.

	The BshClassManager now contains the methods getResource() and
getResourceAsStream().

	The invoke() meta-method is now allowed directly in scope, e.g.
```java
invoke( String methodName, Object [] arguments ) { … }

// invoke() will be called to handle noSuchMethod()
noSuchMethod(“foo”);
```
Previously invoke() was only allowed when called through a this type
reference, e.g. a scripted interface.

	One could use this capability to implement arbitrary command loading
capabilities. You would simply have to handle wrapping/ unwrapping
of primitive value argument and return types with bsh.Primitive.

	Fixed bug in bsh.util.Httpd causing class format errors

	Changed BshServlet redirect to a relative path rather than absolute URL

Changes in 1.2b8

	
	Some Strict Java mode bugs fixed. %(Incompatible API Change)
	Strict Java mode now functions on a per-interpreter basis. The
static strictJava variable is gone (it was always labeled as
experimental) and is replaced by the instance method Interpreter
setStrictJava(). Interpreter set() methods now work (untyped
assignments using Interpreter set() is allowed and existing untyped
variables can be assigned in scripts in either mode).
+Added a test case.
Most bsh commands still fail in strict Java mode for simple reasons.
These will be cleaned up in a future release.

	
	Added check for return of value from void method. Fixed a couple of
	places where we made this mistake.

	Added dirname() command

	
	Added “test” target to build file (runs tests/RunAllTests.bsh). Modified
	RunAllTests.bsh to cd() to the directory containing the RunAllTests.bsh
script before executing the tests.

	
	Certain return type errors now point to specific locations, rather
	than the method declaration.

	Fixed Interpreter setErr() bug

	
	Exceptions thrown from proxy interfaces are now unwrapped.
	If your script throws an exception (or causes one to be thrown) that is
declared in the throws clause of your interface method then it will
be thrown from the method as one would expect.

<h2>Changes in 1.2b7 </h2>
<pre>

	Fixed bug where Interpreter was not closing Reader streams after

sourcing files.
- Updated JConsole to work with Java 1.4.1 (changed getText.length() calls
to getDocument().getLength()).

</pre>

<h2>Changes in 1.2b6 </h2>
<pre>

	Made bsh.Parser public and added a main() method allowing users to

call the parser on files for simple validity checking.
- Made a small addition to grammar to provide an option to retain
formal (JavaDoc style) comments in the parse tree.
- Fixed accessibility bug in finding fields
- Fixed minor bugs in bsh.servlet.BshServlet
- Fixed scoping on catch blocks such that untyped variables
in the catch parameter do not leak out of the block. They now act as they
would with a declared type in Java (local).
- Fixed some thread safety bugs with try/catch blocks.
- Fixed Interpreter serialization issue - reset streams
- Fixed bug in accessibility affecting access to package

hidden superclasses

	Added bshdoc.bsh script and bshdoc.xsl stylesheet to the scripts dir.

These can be used to support JavaDoc style documentation of bsh files
and commands.
- Exposed bsh.BshMethod and added a public invoke() method.
- Added getMethod() method to namespace to enumerate methods

</pre>

<h2>Changes in 1.2b5 </h2>
<pre>

	Fixed bug in using loosely typed vars as indexes to arrays.

</pre>

<h2>Changes in 1.2b43 </h2>
<pre>

	Modified Interpreter so that it is serializable. It is now possible

to serialize the entire bsh instance. The load() and save() commands
however recognize when you are trying to save a bsh object (bsh.This)
type and detach it from the parent namespace, so that saving a bsh object
in this way doesn’t drag along the whole interpreter See This.bind()
and This.unbind().

</pre>

<h2>Changes in 1.2b42 </h2>
<pre>

	Fixed bug affecting scoping in blocks. This was breaking the test

harness in a way that caused it not to be caught before!
- Added a special test for the test harness to catch this sort of thing
in the future.
- Fixed problem with classloading causing bsh extensions not to be found
in some environments.

</pre>

<h2>Changes in 1.2b3 and 1.2b4 </h2>
<pre>

	The class manager now uses the Thread “context classloader” to factory

classes when available. This allows bsh to be installed in the
jre/lib/ext directory (previously user classes wouldn’t be seen). Yeah!
This may also allow bsh to see user classpath in application servers
like WebLogic, which include it in the core classpath.
- added the clear() command to clear variables and methods from a namespace.
- added setOut() and setErr() methods to Interpreter.
- added new bsh.servlet package to the main distribution
- added bsh.Remote launcher

</pre>

<h2>Changes in 1.2b2 and 1.2b3 </h2>

	Fixed nasty bug in grammar, added test cases to expression.bsh

Note: this bug was preventing the latest version of bsh from being used
with WebLogic 6.1 (which uses bsh internally and was failing).
- Handled the “single line comment with no terminating linefeed” issue.
- Added getInterface() method to Interpreter.
- Fixed issue with identity semantics for this in cast case, e.g.:

((ActionListener)this == (ActionListener)this) is now true.

	cat() command will now print files, URLs, streams, and readers

	
	Exceptions in native (compiled) user classes will now print with
	both the BeanShell script trace and native Java stack trace.
Exceptions generated directly from scripts continue to show only the
script trace (as that is all that is meaningful).

	
	ParseException is now a subtype of EvalError… previously these were
	caught and the contents were moved to an EvalError. This means that
now the ParseEx implements the contract as far as getErrorLineNumber(),
getErrorText(), and getErrorSourceFile()

	
	In interactive mode, the last uncaught exception is now available in
	the variable $_e (like the $_ last result).

	
	Improved the way that imported class names are cached in namespaces,
	reducing the number of caches created and improving performance.

	Improved javap() command slightly

	
	Modified This references so that you can invoke the methods: getClass()
	and invokeMethod() on them.

<h2>Changes in 1.2b1</h2>
<pre>

	Added support for accessibility - Using a dynamically loaded extension

(ReflectManager) bsh will use the accessibility API to allow access to
private/protected fields, methods and non-public classes.
- added the setAccessible() command to turn this behavior on/off
(it is off by default in this release… we may change that later.)
- added the bsh.reflect package and ReflectManager to support the above.
- Added support for IBM’s Bean Scripting Framework (BSF).
- Added a new jar with the BSF adapter class bsh.util.BeanShellBSFEngine.
This is also included in the full dist (it’s small).

</pre>

<h2>Changes in 1.1alpha19</h2>
<pre>

	Added a somewhat experimental “strict java” mode. When activated with

	setStrictJava(true) BeanShell will:
	
	
	require typed variable declarations, method arguments and
	return types

	
	modify the scoping of variables to look for the variable declaration
	first in the parent namespace, as in a java method inside a java
class. e.g. if you can write a method called incrementFoo() that
will do the correct thing without referring to super.foo.

	-Added another form of the run() command that accepts an argument to be
	passed to the child context.

</pre>

<h2>Changes in 1.1alpha18</h2>
<pre>

	Fixed a bug affecting static field access.

	
	Added a static setClassLoader() method to Interpreter and BshClassManager.
	This allows an external classloader to be specified.

</pre>

<h2>Changes in 1.1alpha17</h2>
<pre>

	Added simple mechanism to allow scripted commands/methods to accept
class identifiers as arguments. e.g.:

foo(java.lang.String);

see Name.identifierToClass();

	added which() command - shows class source

	modified class browser to show class source when class is selected

	
	Changed the type of the (very recently added) this.callstack reference
	from an array to the actual internal CallStack type. You can use
toArray() to get it as an array or get(depth).

	added unset() method to interpreter. Fixed bug in set(name, null);

</pre>

<h2>Changes in 1.1alpha16</h2>
<pre>

Improved error reporting on errors during method invocation.

</pre>

<h2>Changes in 1.1alpha15</h2>
<pre>

	Fixed server mode and re-added demo applets

</pre>

<h2>Changes in 1.1alpha14</h2>
<pre>

	Important addition - nodes now remember the source file from which

they were parsed… This means that debug messages are much more useful
now, especially with errors thrown from multiple files.
- Re-worked classpath mapping user feedback mechanism (will support a GUI
now).
- Fixed general block scoping bugs. Things should act like Java now.
typed vars declared within blocks does not leak out. e.g. { int i=2; }
- Added getSourceFileInfo() command to return the name of the file or
source from which the current interpreter is reading.
(uses this.interpreter.getSourceFileInfo())
- Added a parent ref to the interpreter for future use by the child
eval interpreters.
- Added new form of source() command that takes a URL.
- Tentatively added new feature to get the text of a method invocation
from within the method body… may be useful along with this.caller.
See namespace.getInovcationText() namespace.getInvocationLine().

</pre>
<h2>Changes in 1.1alpha13</h2>
<pre>

	
	Removed core bsh package dependencies on 1.2. bsh will now compile and
	run under 1.2 with some features limited.

	
	Moved some console related functionality out of the core and into
	bsh.util. There is a new bsh.util.GUIConsoleInterface. NameCompletion
is now in bsh.util and has been replaced with a more primitive
supporting interface bsh.NameSource in the core.

</pre>
<h2>Changes in 1.1alpha13</h2>
<pre>

	Moved all Name object construction into NameSpace. This will support

Name resolvers caching information in the future. e.g. bsh could
know that a variable is final and optimize the resolution. Or a long
chain of names (java.lang.Integer.MAX_INTEGER) could be optimized.
- .class on array types now working. e.g. “int [][].class”
- Fixed bugs in grammar which disallowed certain simple expressions
unless they were parenthesized.
- Fixed related case relating to expressions with assignment to a
throw-away method invocation.

</pre>

<h2>Changes in 1.1alpha12</h2>
<pre>

	
	Added “trace” option.
	java -Dtrace=true bsh.Interpreter or trace() command.
turns on printing of each line before it is executed. Note that
this currently prints only top level lines as they are parsed and
executed by the interpreter. Trace skips over method executions
(including bsh commands) etc. We may enhance this in the future.

	
	Fixed bugs in primitive handling:
	
	primitives smaller than int are now properly assigned in declarations:
	e.g.: byte b = 5;

primitives are internally promoted to the correct type on assignment
to a typed variable,

e.g.: long l = (byte)5; // l is a long value internally

	
	Cleanup in cast operation: re-factored the cast code into two types
	of cast operations.

	
	Tightened up re-declaration of typed variables… You can only redeclare
	a typed var with the same type, else you can an error. Previously
there was odd behavior where you could redeclare with an assignable
type.

	Fixed bugs in casting

	Fixed the remaining known bugs in array initializers. They should now

work precisely as they do in Java. See the test case for examples.

</pre>
<h2>Changes in 1.1alpha11</h2>
<pre>

	
	Improved error reporting. There should no longer be any errors that
	report “unknown location”. At minimum, any error should report the
source file and line number. Normally errors should report the text
of the offending construct.

	
	Cleanup in array handling
	
	fixed bugs with null initializers, loose types, promotion

</pre>
<h2>Changes in 1.1alpha10</h2>
<pre>

	
	Major internal change: added callstack.
	
	two new magic references:
	bsh.This this.caller
NameSpace [] this.callstack

	Some commands now behave correctly, some slight changes- see notes.

	made change to ensure that pathToFile always returns canonical path

this fixed bug in addClassPath

</pre>

<h2>Changes in 1.1alpha9</h2>
<pre>

	Added a very nice ANT build file, yeah!

	added a bit more synchronization in console

	removed unnecessary file/cwd related code

	
	removed unnecessary code and lib file supporting old java packages
	optimization

	Redefined scoping behavior in for-init to act like java. See notes

elsewhere.
- Added switch statement.
- made sure Ctrl-d in interactive mode shuts down interpreter.
- Fixed cleanup of weak references in bsh class manager

</pre>

<h2>Changes in 1.1alpha8</h2>
<pre>

	
	import changes -
	
	Defined order of precedence - in bsh ambiguous imports are compile

time error. In bsh (where imports are allowed at any time) the later
import takes precedence.
- fixed bug causing stack overflow

	
	Internal restructuring - made Interpreter its own class rather than being
	auto-generated by JavaCC. This allows us to generate decent JavaDoc
without hundreds of parser methods. Improved JavaDoc.

	
	Fixed the precedence of name resolution to be consistent with Java.
	variables now always trump class name resolution. This simplifies
name resolution a bit and also makes things a bit faster. However
sometimes you have to use import now to get around a variable name
hiding a qualified class name.

	
	Performance improvement: empty loop test case four times faster
	overall appears as much as 30% faster

	Fixed bugs in certain runtime exception handling

	Fixed bug in static vs. dynamic overloaded method resolution

</pre>

<h2>Changes in 1.1alpha6</h2>
<pre>

	Fixed grammar relating to Expression/BlockStatement parsing… This was

causing the bug with declaring a typed var with a fully qualified class
name. e.g. java.sql.Date date;

	Fixed ‘return’ control problem… return now works properly for

interactive and non-interactive scripts.

	Fixed CTRL-D bug - now exits properly in interactive mode.

</pre>

<h2>
<h2>Changes in 1.1alpha51</h2>
<pre>

	Fixed bug causing debug code to call toString() for every method call on

an object, whether debug was on or not.

</pre>
</h2>

<h2>Changes in 1.1alpha5</h2>
<pre>

	License change only… Added SPL Sun Public License agreement with

dual licensing under the LGPL

</pre>

<h2>Changes in bsh1.1alpha3</h2>
<pre>

	Added .field style properties access in addition to the {} style

	Added anonymous inner class style allocation for interfaces

	Class browser now reflects changes in class path

</pre>

<h2>Changes in bsh1.1alpha2</h2>
<pre>

	
	Added namespace based name completion for console and classbrowser
	completes variables, classes, (coming… bsh methods)

	Added import * capability to read full classpath.

	Added overloading of bsh scripted methods

	
	Added classpath extension and class reloading
	reloadClasses() reloadClasses(item)

	improved the class browser - now has tree for packages and reflects

the extended classpath , other improvements

	Loose arguments in catch clauses now work.

	deprecated getVariable/setVariable api. Moving to get()/set()/eval();

	internally removed BshVariable - it wasn’t doing what it was historically

intended for. Replaced with a new bsh.system object which is shared
across all interpreter instances
- Added bsh.system.shutdownOnExit variable… set to false to prevent
exit() command and desktop close from exiting the VM.
- Loosened grammar to allow import statements in any block scope.
e.g. you can now import within a bsh method and the import will be local
to that method
-Added javap() command… accepts object, class, or string name and
prints public fields, methods

-Added -Doutfile=foo capture output to file (for Windows nightmare)
- Cleaned up a lot of internal structure in NameSpace, etc.
-Interpreter now implements ConsoleInterface

</pre>

Changes in bsh-1.01
<pre>

	Modified parse exceptions to print more tersely…

Removed the “Was expecting one of…” text except when debug is on.
- Fixed the for statement forinit scope bug.
- Got rid of remaining deprecation (using Readers vs. InputStreams)
- Fixed top level expression bug #111342
- Fixed problems with compiling bsh under limited JDK verions (1.1, 1.2).

We now have factories insulating the core from all extended version
capabilities (e.g. proxy mechanism stuff, accessibility TBD)

	
	Modified browseClass() command to accept string class name,
	class instance, or arbitrary object

	
	Modified search for constructors to accommodate package and private
	access.

	Added close button to class browser.

</pre>

<h2>Changes in bsh-1.0</h2>
Not necessarily in order of importance
<p>

Added generalized support for scripts implementing interfaces (e.g.
arbitrary event listeners).
This uses the important new JDK1.3 reflection proxy mechanism to manufacture
a proxy interface at run time. No code generation is necessary!

Added support to the cast operation to use the new mechanism.
Added support for automatic conversion to interface on method selection.
e.g. if you attempt to pass a bsh scripted object as a method argument
where the method signature calls for an interface an automatic cast to
the appropriate interface type will be attempted.
Added a magic method invoke(method,args) which can be used to
handle method invocations on undefined interface methods in bsh objects.
This takes the place of “dummy” adapters; allowing a script to ignore one
or more methods of an interface that it is implementing.
Note: one special case - direct invocations within scope
(e.g. command invocations) are not currently sent to invoke.

 Added startup file (.rc file) support.
Bsh will source the file “user.home”/.bshrc upon startup.
This defaults to C:Windows under win98 and $HOME under Unix.
(can the home be set with an env var under Win? “home” doesn’t seem to do it).

Added arguments to file invocation on command line.
e.g.
<pre>

java bsh.Interpreter MyClass foo bar

</pre>
Args are accessible through the root bsh object: String [] bsh.args

Enhancements to JConsole submitted by Daniel Leuck;
Added color and image support, fixed several bugs.

Added support for inner classes. This should all work as expected, but
it’s new so let me know if you find weirdness.

Added support for inner classes to import statement.

Changed the way eval()/source() handle script errors. Instead of
returning the error object as a value it is now wrapped up with some context
and rethrown as an EvalError. So you can simply catch the error with a normal
try/catch block if you want to. Previously errors in sourced/eval’d files
were being squelched. This was bad. Note: exceptions generated by the
script or through code called by the script are thrown as TargetErrors (a
subclass of EvalError) which can also be caught and examined.

Improved error reporting in many areas.
Fixed really annoying error reporting bug that squelched target error
info in sourced files (and commands).

Improved bsh cast operation so that it throws standard ClassCastException
for invalid cast. You can now guard against them with the ordinary try/catch
in a bsh script.

Modified the command line portion of the grammar to accept arbitrary
expressions. e.g. you can type ``5*2;’’ or ``foo instanceof Foo;’’ on the
command line now without any enclosing parens.
(Of course you won’t see anything unless you’re using the show() option).

Removed the old AWT version of the GUI console. If you need it you can
get it on the web site separately. I may reconsider this.

Removed the console() command which was primarily for the old AWT console.

Modified the browseClass() command to take an object instead of a string
class name. Now you can simple say browseClass(someObject) and pop up
the class browser to the correct place. Special hack: If the specified object
is a Class it will use the class. This will all probably be replaced by
a general browse() method for the upcoming object inspector.

Changed the return type of the frame() command to allow it to return an
internal frame when desktop is active. Frame will now do the correct thing
whether the desktop is up or not.

Rebuilt the distribution with JavaCC / JJTree version 1.1.
Haven’t notice any difference yet.

Fixed the ‘for’ scoping bug - See docs on for scoping for clarification.
Previously variables declared within the for-init section were leaking out
into the outer namespace.

Fixed a bug in which tokenizer errors would cause the interpreter to hang
or exit. They are now handled like other parsing errors. In the future we
may want to break them out so that they can be handled separately from
EvalError.

Added missing += form of string concatenation.

Incorporated a patch and test suite case from Roger Bolsius that corrects
some of the package / hidden reflected class access. Previously the code did
not handle the more difficult cases.

Incorporated a patch from Mike Woolley which works around JDK bug 4071281
(EOF problem) under Windows JDK v1.1.

Fixed most of the bugs in server mode. Run the server pair (httpd /
sessiond) using the server(port) command. Then you can telnet to port+1
or attach your web browser to port. Note that the web browser must support
swing to run the remote JConsole. We could supply the AWTConsole back for
compatibility with old browsers… but I’d like to move on.

Internal trivia - changed the prefix of the names of all of the parser
node classes from AST to BSH.

Fixed a bug which caused ClassCastException during (ironically) a bsh
cast operation.

Improved the test harness slightly and added a number of new files to the
test suite for all of the new features. Please send more test cases for
the test suite!

Internal change: Simplified the code that determines array base types.

 Fixed bug where special characters on input (e.g. control character ^D)
would cause the tokenizer to loop on errors. Non printable chars are now
skipped as white space.

Added the missing do-while statement

Internal: Tightened up the code a bit by combining the BSH node conditional
evaluation into one place.

Fixed some race conditions in the JConsole.
Fixed multi-writer console problems.

Fixed order of evaluation bugs: classes now always first, then bsh vars.
Note: this may not always be desirable. e.g. if you have a class named
“x” in your path (violating the common naming conventions) then you can’t
use a variable of name ‘x’ in your scripts. Conversely though, it prevents
one from doing “Integer = 5;” and shadowing the java.lang.Integer class
with a variable name. Any thoughts on this?

Corrected handling of the bsh root object.

Added a menu item to console to redirect stdin/stdout/stderr.
If you close the console they are restored to the original System.in,out,err.

 # BeanShell - Simple Java Scripting
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE)
[![Build workflow](https://github.com/beanshell/beanshell/actions/workflows/maven.yml/badge.svg?branch=master)](https://github.com/beanshell/beanshell/actions/workflows/maven.yml) [![codecov](https://codecov.io/gh/beanshell/beanshell/branch/master/graph/badge.svg)](https://codecov.io/gh/beanshell/beanshell)
[![coverity](https://scan.coverity.com/projects/16379/badge.svg)](https://scan.coverity.com/projects/beanshell-beanshell)
[![Known Vulnerabilities](https://snyk.io/test/github/beanshell/beanshell/badge.svg)](https://snyk.io/test/github/beanshell/beanshell)

The official and active project home for BeanShell.

NOTICE: Pending new release

The only reccomended version is a manual build of the master branch. Support for legacy releases reached end of line, only issues and pull requests against master can be accepted.

The next release will be BeanShell 3.0 as outlined in the [development roadmap](https://github.com/beanshell/beanshell#development-road-map). It [was decided](https://github.com/beanshell/beanshell/issues/81) that the next release will be a production ready major version with all outstanding issues resolved to encourage community envolvement and testing.

Most of the outstanding issues were [imported from sourceforge](https://github.com/beanshell/beanshell/labels/auto-migrated%20sourceforge), reported many years ago and now orphaned without owners. The majority will already be resolved in master, the valid ones need to be identified to the developers. An earnest call goes out for assistance in processing these issues to verify if they are still valid, reproducible or already resolved.

New language enhancement remain open for [comments and discussion](https://github.com/beanshell/beanshell/labels/discussion).

	Items identified as [out of scope for 3.0](https://github.com/beanshell/beanshell/labels/out%20of%20scope%20v3.0) are scheduled for the next release.
	
	StrictJava compliance, unit tests and outstanding issues

	Updated [documentation](http://beanshell.org/manual/contents.html). The [discussions](https://github.com/beanshell/beanshell/labels/discussion) double as future documentation.

Introduction

BeanShell is a small, free, embeddable Java source interpreter with object scripting language features, written in Java. BeanShell dynamically executes standard Java syntax and extends it with common scripting conveniences such as loose types, commands, and method closures like those in Perl and JavaScript.

You can use BeanShell interactively for Java experimentation and debugging as well as to extend your applications in new ways. Scripting Java lends itself to a wide variety of applications including rapid prototyping, user scripting extension, rules engines, configuration, testing, dynamic deployment, embedded systems, and even Java education.

BeanShell is small and embeddable, so you can call BeanShell from your Java applications to execute Java code dynamically at run-time or to provide extensibility in your applications. Alternatively, you can use standalone BeanShell scripts to manipulate Java applications; working with Java objects and APIs dynamically. Since BeanShell is written in Java and runs in the same VM as your application, you can freely pass references to “live” objects into scripts and return them as results.

License

Starting with version 2.0b5, BeanShell is licensed under the
[Apache License, version 2.0](http://www.apache.org/licenses/LICENSE-2.0). See LICENSE for details, and the NOTICE file for required attributions.

Download

Source code

The development snapshot branch is master, the currently recommended version for use. To build, pull the project and run the maven command.

`shell
$ mvn install
`

Requires as a minimum JDK 8 but will build with Java 9 and Java 10 as well.

The source code releases can be downloaded from [GitHub releases](https://github.com/beanshell/beanshell/releases)
or [Bintray](https://bintray.com/beanshell/Beanshell/bsh/view).

Latest release: not supported (use the recommended development snapshot)

	[BeanShell 2.0b6](https://github.com/beanshell/beanshell/releases/tag/2.0b6) - [bsh-2.0b6-src.zip](http://dl.bintray.com/beanshell/Beanshell/org/apache-extras/beanshell/bsh/2.0b6/bsh-2.0b6-src.zip)

Maven

Beanshell releases are published to [Maven Central](http://central.maven.org/maven2/org/apache-extras/beanshell/bsh/). To use Beanshell with Maven, add this to your pom.xml:


	```xml
	
	<dependencies>
	
	<dependency>
	<groupId>org.apache-extras.beanshell</groupId>
<artifactId>bsh</artifactId>
<version>2.0b6</version>





</dependency>





</dependencies>





```

Alternatively you can use
[our BinTray Maven repository](http://dl.bintray.com/beanshell/Beanshell) or
[JCenter](http://jcenter.bintray.com/org/apache-extras/beanshell/bsh/2.0b6/):

```xml
<!– just beanshell –>
<repository>


<id>bintray-beanshell-Beanshell</id>
<name>bintray</name>
<url>http://dl.bintray.com/beanshell/Beanshell</url>
<snapshots><enabled>false</enabled></snapshots>




</repository>
<!– or use JCenter –>
<repository>


<id>central</id>
<name>bintray</name>
<url>http://jcenter.bintray.com</url>
<snapshots><enabled>false</enabled></snapshots>




</repository>
```

JAR binary

You can also download the bsh.jar binary from Bintray.

	[bsh-2.06b.jar](https://bintray.com/artifact/download/beanshell/Beanshell/org/apache-extras/beanshell/bsh/2.0b6/bsh-2.0b6.jar)

If you want to execute the Beanshell [User Interface](https://github.com/beanshell/beanshell/wiki/Desktop), either double-click the JAR file, or run it with:

`shell
$ java -jar bsh-2.0b6.jar
`

For a BeanShell interactive shell you can either use the java command:

`shell
$ java -cp bsh-2.0b6.jar bsh.Interpreter
`

or the supplied helper scripts bsh or bsh.bat available under the scripts folder.

You will need [Java](http://java.com/) 5 or later installed.

Build

`shell
$ mvn clean install
`

Contribute

You are encouraged to raise a Github [Pull Request](https://github.com/beanshell/beanshell/pulls) with any suggested improvements and fixes!

You can also raise an [issue](https://github.com/beanshell/beanshell/issues) for any questions or bugs. Remember, your stacktrace might be particularly useful for others!

Please note, only issues and pull requests made against the development branch merge-fork-beanshell2 will be considered.

Documentation

For full documentation, see the [BeanShell wiki](https://github.com/beanshell/beanshell/wiki) and the [FAQ](https://github.com/beanshell/beanshell/wiki/FAQ) for frequently asked questions.

The old documentation available at [http://beanshell.org](http://www.beanshell.org/docs.html) may also be useful.

Summary of features

	Dynamic execution of the full Java syntax, Java code fragments, as well as loosely typed Java and additional scripting conveniences.

	Transparent access to all Java objects and APIs.

	Runs in four modes: Command Line, Console, Applet, Remote Session Server.

	Can work in security constrained environments without a classloader or bytecode generation for most features.

	The interpreter is small, ~400K jar file.

	Pure Java.

	It’s Free!!

Java evaluation features

	Evaluate full Java source classes dynamically as well as isolated Java methods, statements, and expressions.

Scripting features

	Optionally typed variables.

	Scripted methods with optionally typed arguments and return values

	Scripted objects (method closures)

	Scripted interfaces and event handlers.

	Convenience syntax for working with JavaBean? properties, hashtables, and primitive wrapper types.

	Auto-allocation of variables to emulate Java properties files.

	Extensible set of utility and shell-like commands

	Dynamic classpath management including find grained class reloading

	Dynamic command loading and user command path

	Sophisticated namespace and callstack management

	Detailed error reporting

BeanShell Uses

	Interactive Java - try out object features, APIs and GUI widgets - “hands on”.

	Scripting extension for applications - Allow your applications to be extended via scripts in an intuitive and simple way.

	Macro Languages - Generate scripts as macros and execute them live in your VM easily.

	Education - Teach Java in a hands-on, live environment

	Expression evaluator for scientific, financial apps and rules engines - evaluate complex expressions with conditions and loops.

	Remote debugging - Embed a live, remotely accessible shell / command line in your application with just a few lines of code.

	Use BeanShell declaratively to replace properties files and replace startup config files with real scripts that perform complex initialization and setup with the full Java syntax at their disposal.

Development road map

Current development effort is focused towards releasing BeanShell 3.0. The following road map serves as a guide to gauge progress to the next release.

	[x] Merge fork BeanShell2

	[x] Support for Java 9/10 with illegal access denied

	[x] Implement varargs

	[x] Implement try with resources

	[x] Implement multi-catch

	[x] Implement interfaces: constants, static and default methods

	[x] Implement generics parsing

	[x] Implement final modifier

	[x] Implement BigInteger/BigDecimal and number coercion

	[x] Make all current unit tests pass

	[x] Increase unit tests code coverage 70%

	[] Resolve all outstanding issues and process pull requests

	[] Apply uniform code style and javadocs

	[] Consider feedback from [community discussions](/beanshell/beanshell/labels/discussion)

Projects using BeanShell

Projects that we know of which use BeanShell. Is your project not listed here? Let us know by submitting an [issue](/beanshell/beanshell/issues).

	[Apache Ant](https://ant.apache.org/manual/Tasks/script.html)

	[Apache Camel](http://camel.apache.org/beanshell.html)

	[Apache Maven](https://maven.apache.org/plugin-tools/maven-plugin-plugin/examples/beanshell-mojo.html)

	[Apache OpenOffice](http://www.openoffice.org/framework/scripting/scriptingf1/developer-guide.html)

	[Apache Taverna](https://taverna.incubator.apache.org/introduction/services-in-taverna)

	[Apache jMeter](https://jmeter.apache.org/usermanual/component_reference.html#BeanShell_Sampler)

	[CA DevTest](https://docops.ca.com/devtest-solutions/8-0-2/en/using/using-ca-application-test/using-the-workstation-and-console-with-ca-application-test/advanced-features/using-beanshell-in-devtest/using-beanshell-scripting-language)

	[Cisco Prime Network](https://www.cisco.com/c/en/us/td/docs/net_mgmt/prime/network/5-0/customization/guide/CiscoPrimeNetwork-5-0-CustomizationGuide/appendix-commandbuilder.html)

	[ImageJ](https://imagej.net/BeanShell_Scripting)

	[JDE for Emacs](https://www.emacswiki.org/emacs/JavaDevelopmentEnvironment)

	[Joget](https://dev.joget.org/community/display/KBv6/Bean+Shell+Programming+Guide)

	[LibreOffice](https://help.libreoffice.org/Common/Scripting_LibreOffice)

	[LifeRay](https://dev.liferay.com/discover/portal/-/knowledge_base/7-0/using-liferays-script-engine)

	[Mentawai](http://old.mentaframework.org/configuration.jsp?loc=en)

	[Micro-Manager](https://micro-manager.org/wiki/Script_Panel_GUI)

	[NetBeans](http://plugins.netbeans.org/plugin/40982/beanshell)

	[OpenJUMP](http://ojwiki.soldin.de/index.php?title=Scripting_with_BeanShell)

	[OpenKM](https://www.openkm.com/wiki/index.php/Scripting_-_OpenKM_6.2)

	[Spring](https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/dynamic-language.html)

	[TestNG](https://testng.org/doc/documentation-main.html#beanshell)

	[jAlbum](https://jalbum.net/help/en/Scripting)

	[jEdit](http://www.jedit.org/users-guide/beanshell-intro.html)

History

2015: Move to github.com

On 2015-09-23, the BeanShell repository moved from https://code.google.com/a/apache-extras.org/p/beanshell/ to its new home on https://github.com/beanshell/beanshell/ as Google Code was been discontinued.

The project adapted an open collaborative approach using [GitHub pull requests](https://github.com/beanshell/beanshell/pulls) and has since grown its committer base beyond the original Apache Extra team.

http://beanshell.org/ remains available for older versions.

2012: Move to apache-extras.org

BeanShell was [proposed as an incubator project](https://wiki.apache.org/incubator/BeanShellProposal) to
move to [Apache Software Foundation](http://www.apache.org/). In preparation for this, the codebase
for BeanShell 2.0b4 was donated to ASF by a code grant, and the license changed to
[Apache License, version 2.0](http://www.apache.org/licenses/LICENSE-2.0).

The source code was moved to http://apache-extras.org/ - a project home hosted by Google Code, that was only informally associated with Apache Software Foundation. Many of the BeanShell committers were Apache committers, and thus Apache Extras seemed a natural home.

However the project did not move into the [Apache incubator](http://incubator.apache.org/), and remained at apache-extras.org as an independent project.

In March 2015 Google announced it would discontinue Google Code, which provided the hosting for Apache Extras.

2007: Community fork beanshell2

The community forked BeanShell in May 2007 creating the [BeanShell2](https://code.google.com/archive/p/beanshell2/) project hosted on google code. The new fork saw crucial fixes and updates with several releases between 2011 and 2014.

The project moved to [GitHub](/pejobo/beanshell2) in June 2016 after google code was discontinued and is independently maintained.

In August 2017 BeanShell decided to merge all the changes from the BeanShell2 fork back upstream ensuring that no effort was lost during this period.

2005: JSR 274: The BeanShell Scripting Language

In 2005 JSR 274 is accepted for officially defining the language but this was never completed.
The current status is dormant as voted by the JCP in June 2011.

[JSR 274: The BeanShell Scripting Language](https://jcp.org/en/jsr/detail?id=274)

1999: beanshell.org

BeanShell was originally developed by Patrick Niemeyer at http://beanshell.org/ - distributed as
BeanShell (2.0b4 and earlier) were distributed under
GNU Lesser General Public License (LGPL) and Sun Public License (SPL).

In 2000 the project was [hosted on sourceforge](https://sourceforge.net/projects/beanshell/) which quickly saw interest in the new java scripting language grow.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

